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FOREWORD

This document is one of sixteen sections that comprise the final
report prepared by the Minneapolis-Honeywell Regulator Company for the
National Aeronautics and Space Administration under contract NASw-563.
The report is issued in the following sixteen sections to facilitate
updating as progress warrants:

1541-TR 1

1541-TR 2

1541-TR 3
1541-TR &4
1541-TR 5

1541-TR 6

1541-TR 7
1541-TR 8
1541-TR 9

1541-TR 10

1541-TR 11

1541-TR 12

1541-TR 13

1541-TR 1k

1541-TR 15

1541-TR 16

Summary

Control of Plants Whose Representation Contains Derivatives
of the Control Variable

Modes of Finite Response Time Control
A Sufficient Condition in Optimal Control
Time Optimal Control of Linear Recurrence Systems

Time-Optimal Bounded Phase Coordinate Control of Iinear
Recurrence Systems

4
Penalty Functions and Bounded Phase Coordinate Control
Linear Programming and Bounded Phase Coordinate Control
Time Optimal Control with Amplitude and Rate Limited Controls

A Concise Formulation of a Bounded Phase Coordinate Control
Problem as a Problem in the Calculus of Variations

A Note on System Truncation

State Determination for a Flexible Vehicle Without a Mode
Shape Requirement

An Application of the Quadratic Penalty Function Criterion
to the Determination of a Linear Control for a Flexible Vehicle

Minimum Disturbance Effects Control of Linear Systems with
Linear Controllers

An Alternate Derivation and Interpretation of the Drift-Minimum
Principle o

A*Minimax Control for a Plant Subjected to a Known Load Disturbance

Section 1 (1541-TR 1) provides the motivation for the study efforts
and objectively discusses the significance of the results obtained. The
results of inconclusive and/or unsuccessful investigations are presented.
Linear programming is reviewed in detail adequate for sections 6, 8, and 16.

It is shown in section 2 that the purely formal procedure for synthe-
sizing an optimum bang-bang controller for a plant whose representation
contains derivatives of the control variable yields a correct result.
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In section 5 it is shown that the problem of controlling m components
(1 <m < n), of the state vector for an n-th order linear constant coefficient
Plant, to zero in finite time can be reformilated as a problem of controlling
a single component.

Section 4 shows Pontriagirts Maximum Principle is often a sufficient
condition for optimal control of linear plants.

Section 5 develops an algorithm for computing the time optimal control
functions for plants represented by linear recurrence equations. Steering
may be to convex target sets defined by quadratic forms.

In section 6 it is shown that linear inequality phase constraints
can be transformed into similar constraints on the control variables.
Methods for finding controls are discussed.

Existence of and approximations to optimal bounded phase coordinate
controls by use of penalty functions are discussed in section 7.

In section 8 a maximum principle is proven for time-optimal control
with bounded phase constraints. An exigtence theorem is proven. The

(iR SA= 0 Y

problem solution is reduced to linear programming.

A backing-out-of-the-origin procedure for obtaining trajectories for
time-optimal control with amplitude and rate limited control variables is
presented in section 9. Co

Section 10 presents a reformulation of a time-optimal bounded phase
coordinate problem into a standard calculus of variations problem.

-A mathematical method for assessing the approximation of a system by
a lower order representation is presented in section 11.

Section 12 presents a method for determination of the state of a
flexible vehicle that does not require mode shape information.

The quadratic penalty function criterion is applied in section 13 to
develop a linear control law for a flexible rocket booster.

"In section 14 a method for feedback control synthesis for minimum load
disturbance effects is derived. Examples are presented.

Section 15 shows that a linear fixed gain controller for a linear
constant coefficient plant may yield a certain type of invariance to
disturbances. Conditions for obtaining such invariance are derived using
the concept of complete controllability. The drift minimum condition is
obtained as a specific example. :

In section 16 linear programming is used to determine a control function
that minimizes the effects of a known load disturbance.
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+
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ABSTRACT ;)f%F1

Necessary conditions leading to a method for the determination
of bounded control amplitude and amplitude rate time optimal
control trajectories by backing out of the origin are developed.
The backling out procedure requires choosing the response time,
the unaugmented system adjoint vector at the response time, the
rate limited control variable amplitudes at the response time, and
the rate limited control variable amplitudes at the initial time.
A set of conslistency conditions on the control variables are then
used to determine the allowable control variable trajectories from
a finite set of possibilities. The state trajectories including
the state at the initlal condition can be determined in the

#d OF >

usual manner from the control variable trajJectories.

INTRODUCTION —

It has long been recoghized that the maximum principle of
Pontryagin would have to be modified to allow for controls whose
switching rates were finite, due either to inertial cr other
factors.

The first insight into the form of the resulting theory was
provided by Birch and Jackson in their 1959 paper, reference

*# Prepared under contract NASw-563 for the NASA

+ Sr. Research Mathematician, Minneapolis-Honeywell.Reg. Co.
Minneapolis, Minnesota
* Research Consultant




2, although they were discussing quite a different. problem.

The first discussion of the problem together with a set of
necessary conditions characterizing the optimal controllers was
provided by Chang. Several of the results in this paper were
indicated by him in reference 1. The proofs herein are
rigorous however, whereas Chang's are heuristic. The aspect of
the problem that is new in the treatment herein is the requirement
that solutlons of the augmented adjoint equations be differentiable
on the whole interval (0,T) instead of merely piecewise differentiable
on so called "pang" intervals. It is this requirement which allows
the "pang" intervals to be located. To be more specific, it is
shown that the optimal control 1s either at extreme amplitude or
extreme velocity. The sub-intervals of (0,T) over which this
behavior occurs can be determined if appropriate initial and

final conditions are given.

PRELIMINARIES

Consider the linear differential equation

x = A(t)x + B(t)u + c(t) (1)
where A is an nxn matnix, B is an nxm matrix, and ¢ is an
n-vector. The elements of A, B, and ¢ are bounded continuous
functions of time on an interval I under consideration. It
is supposed that there are no constraints on the phase variables
x(t) other than the given initial point and the target, and that
the controls u(t) have components that are bounded in amplitude
and rate. The class of admissible controls is defined as ail

vector functions u(t) defined on various subintervals of I whose




components satisfy

ali(t) S_ui(t) S_azi(t) 1i=1,...,m

_ (2)
by (t) L uy(8) <byu(t) 1 =1,..00,k;
where k < m. The functions ali(t)’ aei(t), bli(t), and bgi(t)
are bounded continuous functions with the further assumption
that
b1y € 8py < Ppys byy <agy < by (3)
at all times at which the a's are differentiable (which is
assumed to be almost everywhere).
By defining new controls vy fori1i=1,...,m with vy = ﬁl,
Vo = Ugsees; V) = W Vi1 = uk+l"f"vm = u, and new phase
variables zy for 1 =1,...,n + k with 2y = XgseeesZy = 2,
Zogl T UpseeesZp = Uy the system
z=Fz+Gv+h (4)

18 obtained where
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and where A is the original system's nxn coefficient matrix, Bo
is an nxk matrix whose k columns are the first k columns of the
original control coefficient matrix B, B, is an nx (mn-k) matrix

whose columns are the remaining (m-k) columns of B, and Ik is a

(5)
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kxk identity matrix. The zero matrices are blocks of zeros of
the appropriate dimension to make F have dimension (n+k) x (n+k)
and G have dimension (n+k) X m; the number of zeros in h is k so
that h is an (ntk)-vector.

The system (4) is now in a bounded phase setting, that is,

(this is the bounded phase constraint); furthermore, the bounds

on the amplitude of the new control vector v(t) are given by

bli i Vi(t) _<_ b21; 1 = 1’ooo’k
(7)

a k+l,...,m.

[\
e
“we
e
i

13 £V

NECESSARY CONDITIONS FOR OPTIMAL CONTROLS

For each time T with [0,t] contained in I, the set of all
admissible controls on [0,t] together with their corresponding
responses 1s considered. The set of attainability K(t) is the
set of all points x(t) in R™ which are terminal points of these
response trajectories, i.e., if x(t) is the response to the
control u(t) defined on the interval [0,t], then the point x(t) is
to be included in the set K(t). It can be shown that K(1) is a
compact convex subset of Rn. By considering the collection 2 of
all non-empty compact subsets of R® with the distance d(Cl,CE)
between two such subsets Cl and 02 defined to be the infimum of

all numbers 4 such that C1 lies in the d-neighborhood of C, and

2
02 lies in the d-neighborhood of Cl’ 2 becomes a complete metric

space. Now the set K(t) 1s a compact subset of R" and belongs
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to Z; furthermore, K(t) 1s continuous in T, (i.e. K(Tl) and K(T2)

are close 1n the above metric sense if Tl and 12 are close

together). If x(0) 1s not in the target, then as T increases,

there is a first time T at which the set K(t) comes in contact

with the target. Thus the optimal response ﬁ(r) has its terminal

point Q(T) on the boundary of K(T).

Properties of controls u(t) on an interval [0,%] whose responses

hit the boundary of K(tl) will be examined. To this end the

Tollowing definitions are made:

DEFINITION 1. The linear control process (4) subject to (6) and

(7) is considered. An admissible control v(t) on the interval
[0,T] 1s called an extremal control ¥(t) in case there exists a
non-trivial solution @(t) of the adjoint equations#*

v =-Fy

i

such that
T 0 Bl(s) T 0] Bl(s)
fw%ﬂ[ 9@Ms=mxfw%w[ v(s)ds
0 I 0 I 0

where the maximum is taken over all admissible controllers v(s).

LEMMA 1. A control #(t) on [0,T] is extremal if and only if the
corresponding response z(t) has its terminal point 2(T) on the

boundary of K(T).

PROOF : Assume ¥(t) is such that 2(T) 1lies in the boundary of K(T).

- ————— —— - ——— - - - ——— - —

*¥ A prime on a vector or matrix means the transpose of that
vector or matrix.
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A +
Then let 7 be a support plane to K(T) at the point Z(T), and

let f be an outward normal to K(T) at the point 2(T). Then
' [2T) -2(T)] 20 (8)

for any point z(T) belonging to K(T). Now let A(t,s) be a
fundamental solution of the homogeneous equation corresponding
to (4) with A(s,s) = I, the (nt+k) x (n+k) identity, and consider

the variation of parameters formula for a solution of (4):

2(T) = A(T,0)z_ + jT A(T,0)A™Y(s,0) ]-O Bl(s)] H(s)as
"0

Lz 0
(9)

T 1
+ [ A(T,0)A " (s,0)h(s)ds.
)

Hence

! [Q(T) -z(T)] = ¢y fT A(T,s) [:0 Bl(s>][9(s)-v(s)]ds 2 0.
0 I 0 (lO)

Let ¥(s) be a particular solution of the adjoint equations by

defining
y'(s) = o' (T,s).
Then
T 0 B, (s)
J ¥'(s) [ 1 ] [¢(s)-v(s)Jas 2 O, (11)
0 I 0

i.e., G is an extremal control.
The other case namely, if Q(t) is extremal, is proven by
beginning with equation (11) and proceeding backwards through the

proof of the first case. This completes the proof.
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According to Lemma 1, these extremal controls are candidates
for the optimal controls since previous remarks have established
that an optimal control has a response whose terminal point

lies on the boundary of K(T).
It will be convenient to decompose the adjoint vector ¥ “/(s)

as follows

¥/(s) = (67(s), ¢(s)) (12)
where 6(s) is an n-vector and ¢(s) is a k-vector. Then (11) be-
comes

T ’ / A

é [¢7(s),67°(s) By(s)l[V(s)-v(s)Ilds > 0. (13)

v(s) 1s decomposed by defining
v(s)=[V(S)] (14)
- Lu(s)

where V(s) is a k-vector whose components are

Vl(s) = vl(s),...,i(s) = vk(s)~, and where u(s) is an (m-k)-vector
whose components are gl(s) = uk+l(s),...,g(m_k)(s) = um(s).

Also, for later use, U(s) is defined as a k-vector whose
components are Gi(s) = ul(s),...;ﬁk(s) = uk(s). Then (13)

may be written aé

T/ A ~ T/ A

J ¢ (s)[v(s)-V(s)ldas + [ © (s)Bl(s) [u(s)-u(s)las > o. (15)
0 - 0

It is now possible to refine Lemma 1 as follows:

LEMMA 2. An extremal control ¥(t) must be such that its first

k components (represented by‘%Tt)) satisfy

. |
(f) 91 (s) ﬁi(s)-?i(s)]ds >0 (16)

for i =1,...,k, and for all‘?&(s) which are admissible 10D

components of admissible controls v(s); furthermore, the remaining
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m-k components of ¥(t) (represented by‘ﬁ(t) satisfy
T[e’( )B,(s)] [“(é) (s)lds > oV (172)
{ S)By\8) 1y L 18) - 1y (s)lds 2 O, ra
or equivalently
"lo” 1, I8 ]
é [ (s)Bl(s) N uk+i$s) - uk+1(s) ds >0 (17b)

for i =1,..., m-k, and for all admissible controlicomponents

Upys (8)

PROOF: Let a particular choice of v(s) be made as follows:
VJ(S) = QJ(S) for J # 1 and let vi(é) be merely admissible. Then
Q(S) - v(s) has at most one non-zero component namely,
ei(s) - vi(s). With this choice for v(s), the second integral
in (15) vanishes and condition (16) of the lemma is established.
Condition (17a) and its equivalent condition (17b) are proved
in a similar manner. 7

Returning to equation (8) 1 18 decomposed as follows:

1= (., (18)

where A is an n-vector and { is a k-vector. According to the

definition of W(t) in the remarks following equation (14), z(T)

x(T)
z(T) = ['ﬁ'('l‘)jl
and (8) becomes

A7 [&(T) - x(1)1 + ¢’ [§(T)-8(T)]1 > o. (19)

may be written as

By utilizing the variation of parameters representation of a
solution of (1) (with E(t,s ) as a fundamental solution matrix of

the homogeneous equation where E(s, s) is the nxn identity.
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t
x(t) = E(t,o)xo + [ E(t,s) B(s) u(s)ds +
(o . . . .
t
+ é E(t,s) c(s)ds. (20)

Now, noting that
6/ (t) = A (t)E(%,8) (21)
and substituting this and (20) into (19) there results

T 7/ A /774 ’~
é 67(s) B(s)[(s)-u(s)lds + £/[U(T) - W(T)] > 0, (22)

where u(t) is any admissible control vector
Lemma 3 i1s established in a manner ldentical to that used for

Lemma 2.

LEMMA 3. An extremal control v(s) must be such that its first k
components (represented by él(é);...,ﬁk(t)), when integrated,

yield control components ﬁl(t),...,ﬁk(t) which satisfy
. ,
[ 16" () B(a) ]38, (8)-uy () 1as + £ [y (T)uy (1)1 2 0 (23)

for 1 = 1,...,k and all admissible components ui(t); furthermore,

they must satisfy
T A
J [8°(s) B(s)]y [ui(s)-ui(s)]ds >0 (24)
0

for i = k+1,...,m and all admissible components ui(t).

REMARK 1. It 1s observed that the entire matrix B appears in the
integrand whereas in Lemma 2, the matrix was Bl’ i.e., the last
(m-k) columns of B, Thus (24) is equivalent to (17) because
’ 7
[6°(s) B(8)ly,y = [67°(s) B (s)]y (25)
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for j =1,...,m-K.

Some qualitative properties of extremal controls will now
be established. These are also necessary conditions for an
optimal control. These conditions will be more conveniently

phrased in terms of u(t) rather than v(t).

THEOREM 1, Let G(t) be an extremal control for the system (1).
If ﬁi(t) is at its upper limit during an interval of time, then
the function [6/(s) B(s)], > O on that interval. Also, 1f {,(t)
is at its lower limit during an interval of time, then

[67(s) B(s)], < O on that interval.

PROOF: Let Gi(t) = agi(t) on an interval [tl’t2] and suppose

that [0/ (T) B('r)]i < 0 at some point 7 in [tl, t2]. By continuity,
there is an interval [Tl, 12], containing T in its interior, on
which [6/(t) B(t)], < 0. Consider equation (23) with u,(t)

chosen so that
0 outside of [Tl, 12]
A
uy () - uy(t) =¢ (26)
p(e) > 0 [y, 7,1
Then from (23) {hoting uy (T) - ﬁi(T) = 0}
T |
[ [68'(s) B(s)1, u(s) ds > 0. (27)
T, _

But the integrand is negative on the entire interval and this
is a contradiction. The remainder of the theorem is proved in a
similar manner. Q.E.D.
Now consider again the adjoint equations for (4):
v=-Fy (28)

or, in terms of © and ¢
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6] ¢ 01787
NN
¢ B! ojLe
By performing the indicated matrix multiplication the two sets
of equations are obtained:
6 =-4" o (30)
¢ = - B6 (31)

Notice that 0 corresponds to the adjoint vector of the original
system (1) whereas ¢, corresponding to the augmented coordinates
of the adjoint vector, is a trivial linear system in that no
components of ¢ appear on the right sides.

Given a fundamental solution E(t, to) to equations (30),
(with E(to, to) = nxn identity) represent 6(t) may be represented

by
o(t) = E(t, t,) 6, (32)
Then (31) ylelds ‘ '
t
#(8) - 9(t,) = [ -By(s) E(s, t,) 6 ds (33)
o 4

In the following, a technique for utilizing ¢(t) in the con-

struction of optimal trajectories will be devéléped.

DEFINITION 1, Let ui(t) be an admissible component of the control

vector for (1) or (4), and define an interval of type B as a
maximal closed subinterval of the interval [0,T] whereon ui(t)
is extremal, 1.e., assumes maximum or minimum amplitude throughout

the whole subinterval.
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DEFINITION 2. An interval of type P, for ui(t) is defined to be

a maximal closed interval in the interior of which ui(t) is not
extreme valued, 1.e., u; assumes neither 1ts maximum nor its
minimum amplitude at any point in the interior of the interval.
Note that if P, # [0,T], then ﬁi i1s extreme at one end (or both)

of Pl‘

DEFINITION 3. An interval of type P, for ui(t) is defined to be

2
a maximal subinterval of [0,T] wheron ui(t) is not extreme and

whereon ﬁi(t) is at one of 1lts extremes, but not both.

REMARK 2. The interval [0,T] can be decomposed into non-

overlappling Intervals of type B or type Pl whose union is [O,T].

THEOREM 2. Let the system (1) be normal and consider an extremal
control vector 4(t) for (1). For each 1 = 1,...,m it is the
case that on an interval of type P, for ﬁi(t), either éi(t) is
at its maximum value or its minimum value at every t at which

éi(t) is defined,

PROOF :Let t belong to the interior of P, and assume that él(t)

1
is defined and is not extreme. Then, since [67(s) B(s)]i is not
zero on an interval by normality, we may assume further that t is
such a point where [67(s) B(s)]i is not zero. (This would

eliminate a set of tin the interior of P1 whose measure is zero).
By continuity, [67(s) B(s)]; is of one sign on an interval about
the pcint t under consideration. For definiteness, assume

(¢ () B(t)]i < 0, Then since ﬁi(t) 1s not extreme and since éi(t)

is not extreme, an admissible control ui(s) is constructed as

follows: Let M; be a line through the point (t, ﬁi(t)) whose
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slope 1is bli(t). (For simplicity, it is assumed that

b,,(8) < 0 & by, (8) where both equalities do not hold
simultaneously. Other cases would be treated similarly.) For

a given 5> 0, let ml(ﬁ) be a line through (t, Gi(t)) whose

slope is equal to the minimum of bgi(s) on the interval

[t, t + B] and let m2(6) be a line through the same point whose
slope 1s the maximum of bli(s) on the interval [t, t + 5]. Now
let §,.. > O be chosen so small that the line ml(ﬁol) lies entirely

01

between* the curve Gi(s) and the line M, in the interval [t,t + §

Ol]

and let 602 > O be chosen g0 small that the 131

between the curve ﬁi(s) and ‘the line M, in the interval [t, t + &

N

7 02
Let 60 denote the smaller of-ﬁoi and 502 and further be small enough

that [01(s) B(s)]i < 01in [t, t + B5] and 1let m, and m, be the
lines corresponding to 60; see Fig. 1.
According to the previous construction, there is a segment S of

the ordinate at t + qj which is cut out by the 1line m, and the

1
curve Gi(s). Since Gi(t) is not equal to its minimum value ali(t)’ |
then by continuity, there is a point P on the segment S such that 3
the line L through P parallel to m; will intersect the curve Gi(s) ‘
at the point R at a time 7 in (t, t + 60) and such that it will
intersect the line m,, at a poiht Q at some time o for which this
intersection is above the height'ali(d). Now define ui(s) to be

A
equal to ui(s) for s £ ¢, and s 2 t. On the interval [t, 7]

|
|
\
|
* m, may coincide with Ml; similarly m, may coincide with M2.
|
|
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define ui(s) to be the segment of m, between the point (t, ﬁi(t))
and Q; and to be the segment of L between Q and R. Thus ui(s)

is an admissible control satisfying the amplitude and the rate
bounds either by construction or because it is equal to ﬁi(s)
which is assumed admissible.

Now equation (23) with the particular ui(s) Just constructed

is considered; It is seen that
T
[ ter(s) Bo)1, () - wy(e)las 2 0 (34)
t I - . '

But [6'(s) B(s)]l; < 0 in [t, 7] while Gi(s) - u,(s) > 01n

(t, t). This ig a'contradiction'and hence the velocity of Gi(t)
must be extreme. The proof goes through in the same way if 1t is
assumed that [6'(t) B(t)]i > 0. Q.E.D.

REMARK 3. It follows from theorem 2 that the interval [O, T]
is decompoéable into subintervals of type B or type Pl which
are nonoverlapping and whose union is [0, T]. In otherfwords, the
optimal control is either at extreme amplitude or extreme velocity,

whenever the veloclity is defined.

THEOREM 3., Let the system (1) be normal and consider an extremal
A - -

control vector u(t) for (1). For each 1 =1, ..., m it i8 the

such that

case that if there is an interval of type P, for G

1 i
at least one of its endpoints say t*, 1s in the interior of
[0, T], then for all t in the P, interval for which ui(t) is
defined: (1) ,(t) > ¢,(t*) implies that 4, (t) 1s at its

Y

maximum value; (11) ¢1(t) <'¢i(t*) implies that ﬁi(t) is at its
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minimum value.

PROOF : From Theorem 2 éi(t) is at one extreme or the other in

Pl intervals. By hypothésis, since one of the endpoints of the
P, interval under consideration is a point t* interior to (O, T)
it may be assumed without loss of generality‘(w.l.o.g.) that

the point t* is the right end of Pl. Fuftherhore,fit is

assumed w.l;o.g. that ﬁi(t*) is a minimum. Now let t be a point

in P, at which Gi(t) 18 defined and suppose that ¢i(t) is greater

1
than ¢, (t*) but &, (t) s minimum (1.e., b,,(t)). Figure 2 supplies
the details, ' ' o

ui(s) is chosen so that on [t, t + 8] it has maximum slope and lies
above Gi(s) while it is parallel to ﬁi(s) from t + & to some

point T > t*, (choose © so small that T < T). Then let ﬁi(s) = ui(s)

from vt to T.

Now from the construction of ui(s) and from equations (23)

t + 0 t*
j’ [61(s) B(s)]i[ﬁi(s) (s)]ds + j’[G'(S)B(s)] [u (s)-u (s)Jas
t T C . t+0 ’
T
+f [61(s) B(s)1,[R,(s) - w(s)las 2 0 (35)

t*
on [t + 5, t*] the function 0 (s) - uy (s) has the constant value,
say -e€. Thus the middle integral is

t*
-e[ [6'(s) B(s)]; ds. (36)
£+6 :
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Note that as 5 approaches zero, the integral in (36) (ignoring

the multiplicative factor e) approaches

t* t*
J[ [o1(s) B(s)]ids = - jp‘ ¢i(s)ds = ¢i(t) - ¢i(t*)
t ‘ ' t ' - - (37)
Ar>o0
Choose 50 so small that for all 5§ < 60
%
L< Jf‘[er(s) B(s)]; as < 3 (38)

t+06

Now the first integral in (35) can be made small on the order

of 52 as follows: since Iﬁi(é) - ui(s)l < K, Is - tl on [t, t + 8],

t + 0 t+
| [ ter(e) B(a)1, 1808 - wy(e)das $x; [ | 16r(e)8(2)1, Js-tlas
t T ) ' t
(39)
Letting K, = max I[G'(s) B(s)]il yields
[t,t+601 S
t+0 2
Ij. [61(s) B(s)]1 [Gi(s) - ui(s)]ds S Ky K, %— . (40)
An easler analysis applies to the last integral; namely
T
[01(s) B(s)]; [4;(s) - uy(s)las| $ Ky € (7 - ). (42)

t*
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As a result of (41), (40), (38) and (35)

[k, X, gf-- g-e + Ky e (1 - t%)] 2 0. (u2)

It 1s next shown that 6 is bounded above by a constant times €.

A
1

their difference is not zero on [t, t + 6]. Let the minimum of

It is observed that ﬁi is greater than on [t, t + 8], hence

this difference be denoted by ¢ > 0, then

B0,
4, (s) - 4, (s)]ds 2 ¢ (43)
i i 1
z o .
or
t+6
< _A
c, 62 ui(s) ui(s)
‘ R
= 4, (645) - u, (£+5) (44)
A ' |
= €
Thus cq 5 < eorb S c, € where o > 0. Applying this result to

(42) yields

K1K2c§e2--§-e+x3e(r-t*)20 (45)

or

¢ (Ky Ky CF € + Ky(7 - t*) - g) 2 0. (46)




-1G-

But (46) is a contradiction because for & sufficiently small,

€ and T - t¥ can be made arbitrarily small which means the
quantity in'parantheses 1s negative. Thus it has been shown that
when ¢i(t) > ¢i(t*) then ﬁi(t) is maximum (where it is defined).
A similar proof will show that ¢i(t) 4 ¢i(€*) implies éi(t) is

minimum.

REMARK 4, Note that intervals of type P, coincide with intervals
whereon the sign of ¢i(t) - ¢i(t*) is constant for appropriately

chosen points t¥, It will be shown later that there are only a

possible in those cases where ui(t) is given at the final time as
well as the initial time, to constfuct the family of extremal

controls.

THEOREM 4 . Let the system (1) be normal and consider an extremal
control vector ¥(t) for (1). For each i =1, ..., m it is the

case that if the entire interval [0,T] (where T is the minimal time
of response) is of type P, for Gi(t), then there exists a constant
c

such that if ¢, (t) = e, >0 then ui(t) is at its maximum value

i
and if ¢, (t) - ¢

i

5 < O then Q0 (t) 1s at its minimum value (assuming

that U (t) 1s defined at t). If there are at least two intervals
of type P2 contained in the interval of type Pl’ then the value of
the constant c; is equal to ¢1 evaluated at any of the interior
endpoints of the type P2 intervals,

PROOF:

CASE I: If the whole interval [0,T] is of type P, the theorem

is trivially true as the constant Cy in this case may be chosen ta
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be the minimum or the maximum of the function ¢1(t) on [0,T]

depending on whether Gi is maximum or minimum.

CASE II: If there are at least two intervals of type P2 contained

in P, then let t* be an 1nterior endpoint of a P, interval.

1 2

Consider the case where 1 (t) is minimum to the left of t* and
maximum to the right of t* (the other case with the maximum and
minimum reversed would be-tfeated similarly). Let t' be any
interior point of [0,T] which is not the endpoint of an interval

of type P,. Assume that ¢(t') - ¢(t*) > 0 but that u i(t’) is at

Let 1t M

U'
2
3
3
)
2

< % Then construct
ui(t) on [0,T] as follows: Let ui(t) = Gi(t5 for t £ t ; choose

5 > 0 so small that if ui(t) has maximum vélécity on [t', t + 8],
is parallel to Gi(t) on [t' + &, t*], and has minimum slope for

a suitable time duration to the riéht of t*, then the curve ui(t)
will intersect the curve G}(t) at some poiht T to the right of

t*, (This cholce is possible because the slope of ﬁi(t) is
maximum to the right of t*). PFinally, let ui(t) = Gi(t) on [t,T].

From here on, one proceedsAexactly as in the préof of tﬁeorem 3

beginning with equation (35).

A METHOD FOR COMPUTATION OF EXTREMAL
TRAJECTORIES FOR AMPLITUDE AND RATE
LIMITED CONTROLS

The foregoing theorems will now be given a more useful interpretation.

Since the case where al, a2, ?11’ b2i’ 1 =1, ... k are constant



i1s of particular interest, as each condition on extremal
trajectories is stated 1ts specialization to this case will also

be given. Each interval P1 of type Pl has a unique decomposition

P, =P. U P

1 > 2U...UP2 (47)

1 2 r

into intervals P of type P2 where FQIW ?2 congists of

precisely one poigt, p=1,2, ..., r-ﬁ. Tﬁzlbar indicates

topological closure. Let Gﬁ be the ith component of the optimal
control G corresponding to the function ¢. In all that follows
let Pl be an interval of type P1 for Gi‘
corresponding to the interval P1 there 1s a constant ¢

Theorems 3 and 4 show that

i

the subintefvals P2 of Pl coincide with those subintervals of P

P
whereon sign (¢i(t) - ci) is constant. Let

such that

1

sign (P2 ) & sign (¢i(t) - ci), t e P, (48)

P P

Then (P2 ) is set equal to the length of P2 and several cases

P Y
are considered. Let Ty 72 be the endpoints of Pl'

CASE I: 7t., T, both belong to (0,T). Then it is clear that

1 2
‘Gi(Tl) and ﬁi(r2) are both extremal. In fact

A (e = a2i§Tl? if sgn (Pel? = -1 (a)
it ali(Tl) if sgn (Pel) = +1 ,
‘ ’ (49)
A () aei(Te) if sgn (P2r) = +1 (v)
u = . .
102 ali(Tz) if sgn (P2 ) = -1 A

r
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CASE II: Either T, or 7,, but not both belong to (0,T). Then if
e (0, T) 49(a) holds, if 1, € (0,T) 49(b) holds. In each case
the value of u at the other endpoint, i.e., either { (O) or u (T)

must be specified in some other manner.

CASE III: =0, T, = T. Then both Q (0) and ui(T) must be

T1 2

specified, neither 49(a) nor 49(b) hold.

It 1s possible to consider problems wherein neither Gi(o) nor
ﬁi(T) are specified. In this case the procedure to be described

beiow is not immedlately applicaﬁle. This situation arises in

+ha an—n=2l1lad -1n1-n*nnnn+4nn nrnhlam
[T ¥ A g Nl W LAl ke W wedd VWA WA WS Wk WAL y‘- Nt At duNr fLh @

at the end of this paper.

The values which ﬁi(t) assumes at 7, and 7, lead to the following

conditions merely b& épplying the fundamental theorem of
calculus for absolutely continuous functions.

CONDITION 1
A A
Z [ bei(t)dt + z f bli(t)dt = ui('re) - 4, (7q)
P o B o e _
2 2
P

p? sgn(P2 ) = +1 p?d sgn(P2 ) = -1
p- - “p.

If the bounds on the control velocity are constant then

CONDITION 1la

Z'!,(PQP) by Y ’Q(Pep) byy =8y (75) -4 (7y)

p sgn (P2 ) = +1 p sgn (P2 ) = -1
~ “p : - “p.




-23-

The requirement that ui(t) shall not achleve an extreme value

in the interior of Py leads to

CONDITION 2 For each o such that 1 L o < r (this set could be
void) ” '

E: -j,Pep bgi(t?dt + E: _['92 bli(t)dt

where Tog is the right endpoint of the interval P The

o*
inequalities (3 ) enable this testing procedure to be restricted
to points TQG;' Again if the bounds on the control velocity are

constant

CONDITION 2a

— — — —jb
y A (Pzp? by + y A (P2p) by,
pIsgn (P, ) = +1 pisen (B, ) = -1
P - P
P o i P $ g |

<an, - O ()
* f21 1'1

A
> ajy - uy(7y)
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DEFINITION 4,

Subintervals of [0,T] on which any control ui(t)
may be dfined so that Conditions 1 and 2 above are satisfied with

, = +1,

: T , " p

ui(t) = bli(t) if sgn P, = -1, are called intervals of type P,.
: P

Thus every interval of type Pl is also of type P3 by Theorems 3, 4.

@, (t) replaced by u,(t), u, (t) = by, (t) if sgn P

The converse need not hold since there may be no extension of

ui(T) from the given interval of type P3 into the entire interval

[0,7] as an extremal controller.

DEFINITION 5. A decomposition of I = [0,T] into subintervals of
types B and F3 is called acceptable if the resulting control

ui(t) is continuous and satisfies the preceding theorems on extremal
controllers. The intervals of type P3 then become intervals of type

p., for ui(t).

1

The following theorem is of primary importance in establishing a

procedure for computing extremal controllers.

THEOREM 5. Assume that (G'B)i(t) has at most finitely many zeroes
on [0,T] and the functions éli(é) and agi(t) are constants. Then
there are at most finitely many bossible intervals of type P3,

provided ui(O) and ui(T) are specified in advance.

PROOF: For a linear differential system the interval [0,T] may
be divided into finitely many subintervals in which ¢i(t) is
monotone. To prove this, note that the negation implies that
(G‘B)i(t) has infinitely many zeroes in [0,T], contrary to
assumption. Thus the inverse function t(¢i) of the function ¢i(t)

consists of finitely many functions tl(¢i)’ e ts(¢i), each a
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monotone function defined on some subinterval of

min ¢.(t), max ¢.(t)] and o, < o, implies that t_ (¢,) < t_. @)
[te[O,T] 1 te[0,T] *. J 172 oy 4 9+

W.l.o.g. it may be assumed that t6(¢i) is decreasing for odd o
and increasing for even o.(Figs. 3'ané 4.) The other case is

handled similarly. Let t_(¢,)=0, to1(8)=T.

The domain of definition of each td(¢i) is extended to all of

min max by setting t _(@,) equal to t _(,*)
[te[O,T]¢i(t) te[O,T]¢i(t)] o 4’ o1

where ¢,* 1is the closest point to ¢, where to(¢ *) is already

defined (Fig. 5) For each of the finitely many pairs of indices
< < 1
o5 Gy, 02 0y <0y 25+ 1, g“i 02(¢1) is defined by
% ts /
i ~
&a, 02(¢i) = E: J( By (t)at (50)
o=ap+1  t (%)
where
bgi(t) if ¢ is odd
bli(t) if o is even
Then it 1s easy to see that each gi (¢,) is a monotone
gp o771

decreasing function of ¢,. (If t (¢,) were increasing for o odd,
b o''1

decreasing for o even, then go o

(¢i) would still be a monotone
1 2. .

decreasing function.)

It is clear by comparison of (50) with Condition 1 that an interval

of type P3 can occur only when there exists a pair o,, N and a

value ¢i such that
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gil °é€¢i? u1%o A ) - ui(t°1<¢i?) (52)

where ui(t) is the control which must be defined on the interval
according to the definition of an interval of type P3. A number
of cases are now considered:

If oy = o, Oé = 8 + 1, then we required in the hypotheses of this
theorem that ui(O) and ui(T) be fixed. Thus ui(t (¢ )) i(tcl(¢i))

is a constant khohn beforéhénd.

if oy = 0, cé arbitrary > O then ui(t (¢ )) is fixed at a constant
value known beforehand while ui(t (¢i)) 21(t (¢ )) or

11 (g (¢ )).

If o, = 8 + 1 while o, 1s arbitrary < s + 1 then u, (tg (¢ )) is
fixed at a constant value known beforehand while uy (t (¢ )) =
Ei(tcl(¢i)) o ali(toé(¢i)?'
If 0< 0; < 0, < s+ 1thenu (t (¢ )) - u (t (¢.)) is one of
l

the four functions aﬁi(t (¢ )) yi(t (¢, )), 8=1, 2, vy =1, 2.

Thus, since it was assumed the functions ali(t), agi(t) were constants,
it has been shown that there are at most finitely many values which

u, (t (¢ )) - i(t (¢ )) may assume for each gy, O,. Since there
are finitely many functions g (¢ ) and each of them is monotone,
there are but finitely many instaﬁces wherein equation (52) may

hold. This completes the proof of the theorem.

REMARK 5. In the case where aei(t) and ali(t) are not constant

but vary with time, the flnitely mény valueé which we have shown
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in the proof of the theorem may be equal to u,(t (¢ )) - uy (tg (¢i))
must be replaced by the finitely many functions u, (t (¢ )) -
u(t (¢ )) themselves. Then the conclusion of the theorem remains
valid if for each 0,, 0, the function g (¢ ) - (u (t (¢ )) -

1’ Y2 g, 9,
ui(t (¢ )) has but finitely many zeroes on its domain of
definltion. It 1s difficult to give a reasonably general sufficient
condition under which this holds sothe restriction to the case

where agi(t) and ali(t) are constant was made. Clearly the

likelihood is very small that any of these functions would have

fairly safe to assume that there are but finitely many P3 intervals
even if ali(t) and azi(t) are time-varying but it should be kept

in mind that this has not been established and it may be possible
to construct pathological functions azi(t), ali(t) such that

this would not be true.

REMARK 6. Note that the theorem also shows a method for finding
the intervals of type P; since the functions g o) (¢ ) and the
constants (or functions uy (t (¢i)) - uy (t (¢ )) are readily
determined. An acceptable deiomposition of [O T] into intervals
of types B and P3. Thug after having found all possible Intervals
of type P3 (and the previous theorem assures us that in many cases
this can be(done), it remains only to find all acceptable
decompositions of [0,T], and hence all possible controls ui(t)

which satisfy the first four theorems. There beling only finitely
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many of these the control Gi(t) which satisfies inequality ( 11)

can easily be found.’ If no values are given beforehand for ui(o)
and or ui(T) then these values could be varied and the above results
applied to éach choice of those values to determine the best (in

the sense of (11)) set of values for ui(O) and or ui(T).

A short example illustrating the use of the above results 1is now

given,
AN EXAMPIE TO ILLUSTRATE THE
CONSTRUCTION OF AN EXTREMAL CONTROL
Let the time interval be [0,2] and (O° B)i(t) = - %ﬂ cos (%E t).

Then ¢i(t) = sin (gﬂ t). Suppose that ézi =1, ajy = -1,

Require Gi(o) = 0, 31(2) = 0. The extremal control ﬁi(t) on [0,2]
will be cohséructed. ‘The method used will be graphic and will be
gpeclal to the constants ay4> 854 bzi’ b11 in this problem.

Its relationship to the immediately preceding discussion should
be clear, as well as generalizations to different constant bounds.
An interval of type P3 occurs whenever 1t 1is possible to draw a
level line I through the graph of sin (-g—1 t) so that the end-
points of L lie on the graph of sin (gﬂ t) or else meet the lines
t =0or t =2 and satisfies the foliowiné requirements: (Compare
with Conditions 1 and 2 above.)

1. If the endpoints of L are in (0,2) then the sum S of

the lengths of those segments of L lying beiow sin (gﬂ t) minus

the sum of the lengths of those segments of L lying above sin

(gﬁ t) must be 2, -2, or 0. If L' is any segment of L such that
the left endpoints of L and L' coincide then, (a) If the first

segment of L! lies below sin (%E t) the sum S' of the lengths
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of those segments of L!' lying below sin (%E t) minus the sum of
the lengths of those segments of L' lying above sin (gﬂ t) must be
<2 and >0. (b) If the first segment of L' lies above sin (gﬂ t)
fhen the corresponding quantity must be >-2 and <O0.

2., If t =0 is an endpoint of L and the right hand endpoint
of L belongs to (0, 2) then S =1 or -1 and -1 < 8' < 1 for any
L', A similar situation occurs if the left hand endpoint of L
lies in (0, 2) and the right hand endpoint is at t = 2, but here
L, L' are taken to have a common right hand endpoint;

3. If L stretches from £t = 0 to t = 2 then S = 0 and
-1 < S' < 1 for any L' having an endpoint in common with L.

The graph in Fig. 6 shows all possible intervals of type P3
indicated by level 11?es through the graph. The only acceptable
sequence of 1ntervals‘cdnsists of the single interval Pl of type

P, which is indicated in the figure. This is clear by inspection,

1
using the results of the first four theorems. Fig. 7 shows the

resulting extremal control ui(t).

CONCLUSIONS

Necessary conditions leading to a method for the determination
of bounded control amplitude and bounded amplitude rate time
optimal control trajectories by backing out of the origin were
developed. It can thus be sald the theory of bounded rate
optimal control has been brought to the same stage of development
as the theory of optimal control without rate or phase bounds.
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Figure 1. Construction of Admissible Varied Control to Prove {‘11 Extremal
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MAXIMUM AMPLITUDE
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Figure 2, Construction of Admissible Control in Proof of Necessary
Conditions for P1 Intervals
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(t), Indicating Intervals of Monotonicity

1

The Function ¢,

Figure 3.
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DOMAIN OF DEFINITION OF t,(s,)

Figure 4. The Inverse Functions ts (¢i) of ¢,
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THESE LINES
ARE IDENTICAL

THESE LINES
ARE IDENTICAL

Figure 5. Final Form of the Functions to(¢i)
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NOTE: BROKEN LINES ARE ACTUALLY AT THE SAME LEVEL AS ADJACENT SOLID LINES

Figure 6, All Possible P, Intervals for the Function ¢(t) = sin ( %5-t)
On the Interval [0, 2]
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Figure 7, Extremal Control Constructed Using Results Shown
on Figure 6
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